当前位置:首页 > 原首页 > 研究队伍 > 量子材料与器件研究中心 > 正文

量子材料与器件研究中心

杨小龙

发布时间:2021-11-11资料来源:点击次数:

杨小龙 副教授


教育背景及工作经历

2021.07-至今,重庆大学,物理学院应用物理系,副教授

2019.07-2021.07 深圳大学,高等研究院,博士后

2017.10-2018.11 美国普渡大学,机械与工程系,访问学者

2015.03-2019.06 西安交通大学,材料科学与工程,博士

2013.09-2015.03,西安交通大学,凝聚态物理,硕士

2009.09-2013.06,兰州大学,材料物理,本科


研究方向

1.微纳尺度声子传热的理论计算

2.基于电子结构的多尺度模拟

3.电声耦合相关输运理论研究

4.低维材料,热电材料,光谱(拉曼,光吸收等)模拟

5.电催化(HER,ORR,OER等)


论文列表(#共同第一作者)

自2013年在Nature、Nature Communications、Physical Review Letters、Nano Letters、ACS Nano、Materials Today Physics、2D Materials、Applied Physics Letters、Physical Review Materials、Physical Review B、ACS Appl. Mater. Interfaces等期刊发表学术论文共26篇。

1.X. Yang; Z. Liu, F. Meng, and W. Li, Tuning the phonon transport in bilayer graphene to an anomalous regime dominated by electron-phonon scattering,Phys. Rev. B104, L100306 (2021).

2.Z. Liu;X. Yang; B. Zhang; X. Li, and W. Li, High thermal conductivity of wurtzite boron arsenide predicted by including four-phonon scattering with machine learning potential,ACS Appl. Mater. Interfaces, in press (2021).

3.Z. Han;X. Yang; W. Li; T. Feng, and X. Ruan, FourPhonon: An extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity,Computer Phys. Commun., 270, 108179 (2021).

4.X. Yang, A. Jena, F. Meng, S. Wen, J. Ma, X. Li, and W. Li, Indirect electron-phonon interaction leading to significant reduction of thermal conductivity in graphene,Materials Today Physics18, 100315 (2021).

5.X. Yang#,T. Feng#, J. S. Kang, Y. Hu, J. Li, and X. Ruan, Observation of strong higher-order lattice anharmonicity in Raman and infrared response,Phys. Rev. B: Rapid Communications101, 161202(R) (2020). (Selected as an Editors’ Suggestion.)

6.X. Yang, T Feng, J Li, X Ruan, Stronger role of four-phonon scattering than three-phonon scattering in thermal conductivity of III-V semiconductors at room temperature,Phys. Rev. B100, 245203 (2019).

7.T. He#, W. Wang#,X. Yang#, Z. Wang, Z. Shan, M. Jin, and Y. Yin, Inflating hollow nanocrystals through a repeated Kirkendall cavitation process,Nature Communications8, 1261 (2017).

8.W. Wang#, T. He#,X. Yang#, Y. Liu, C. Wang, J. Li, A. Xiao, K. Zhang, X. Shi, and M. Jin, General Synthesis of Amorphous PdM (M = Cu, Fe, Co, Ni) Alloy Nanowires for Boosting HCOOH Dehydrogenation,Nano Letters21, 8, 3458–3464 (2021).

9.T. He#, W. Wang#,X. Yang#, F. Shi, Z. Ye, Y. Zheng, F. Li, J. Wu, Y. Yin*, and M. Jin, Deposition of Atomically Thin Pt Shells on Amorphous Palladium Phosphide Cores for Enhancing the Electrocatalytic Durability,ACSNano15, 4, 7348 (2021).

10.X. Yangand W. Li, Optimizing phonon scattering by tuning surface- interdiffusion-driven intermixing to break the random-alloy limit of thermal conductivity,Phys. Rev. Mater.2, 015401 (2018).

11.S. Huang#, M. Segovia#,X. Yang#, Y. R. Koh, Y. Wang, D Ye Peide, W. Wu, A. Shakouri, X. Ruan, X. Xu. Anisotropic thermal conductivity in 2D tellurium,2D Materials7 (1), 015008 (2019).

12.X. Yang, J. Carrete and Z. Wang, Optimizing phonon scattering by nanoprecipitates in lead chalcogenides,Appl. Phys. Lett.108, 113901 (2016).

13.X. Yang, J. Lin, G. Qiao and Z. Wang, “Atomistic mechanisms governing stability change of zinc antimony thermoelectrics”,Appl. Phys. Lett.106, 013904 (2015)

14.X. Yang, J. Carrete and Z. Wang, “Role of force-constant difference in phonon scattering by nano-precipitates in PbTe”,J. Appl. Phys.118, 085701 (2015).

15.T. He#, W. Wang#, F. Shi#,X. Yang, X. Li, J. Wu, Y. Yin and M Jin, “Mastering the surface strain of Pt catalysts for efficient electrocatalysis”,Nature, 598 (7879), 76-81 (2021).

16.Y. Luo,X. Yang, T. Feng, J. Wang, X. Ruan, Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals,Nature Communications,11 (1), 1-10 (2020).

17.A. Kundu,X. Yang, J. Ma, T. Feng, J. Carrete, X. Ruan, G. K. H. Madsen, W. Li, Ultrahigh thermal conductivity in θ-phase tantalum nitride,Phys. Rev. Lett., 126, 115901 (2021).

18.Z. Wang,X. Yang, D. Feng, H. Wu, L. Zhao, J. Carrete, C. Li, S. Cheng, G. Yang and J. He, Understanding phonon scattering by nanoprecipitates in potassium-doped lead chalcogenides,ACS Appl. Mater. Interfaces9 (4), 3686–3693 (2017).

19.Z. Zhu#,X. Yang#, M. Huang, Q. He, G. Yang and Z. Wang, Mechanisms governing phonon scattering by topological defects in graphene nanoribbons,Nanotechnology27, 055401 (2016).

20.G. Guo,X. Yang, J. Carrete, and W. Li, Revisiting the thermal conductivity of Si, Ge and diamond from first principles: roles of atomic mass and interatomic potential,J. Phys.: Condensed Matter, accepted (2021).

21.Z. Tong,X. Yang, T. Feng, H. Bao, and X. Ruan, First-principles predictions of temperature-dependent infrared dielectric function of polar materials by including four-phonon scattering and phonon frequency shift,Phys. Rev. B101, 125416 (2020).

22.T. Feng, X. Wu,X. Yang, P. Wang, L. Zhang, X. Du, X. Wang, S. T. Pantelides, Thermal

conductivity of HfTe5: a critical revisit,Adv. Func. Mater.30, 1907286 (2020).(Selected as a Cover Paper)

23.T. Feng,X. Yang, Xiulin Ruan. Phonon anharmonic frequency shift induced by four-phonon scattering calculated from first principles,J. Appl. Phys.124, 145101 (2018).

24.Y Luo,X Yang, J Wang, Hierarchical thermal transport mechanisms in Yb2Si2O7 multifunctional thermal and environmental barrier coating (TEBC) material,Scripta Materialia194, 113704(2021).

25.Z. Wu,X. Yang, Z. Wang. Size effect on the spontaneous coalescence of nanowires.Nanotechnology30, 245601(2019).

26.S Yu, Y Wang, Y Song, L Xia,X Yang, H Fang, Q Li, X Li, Hole doping induced half-metallic itinerant ferromagnetism and giant magnetoresistance in CrI3 monolayer,Applied Surface Science535, 147693 (2020).

欢迎感兴趣的本科生、研究生加入课题组!

E-mail:yangxl@cqu.edu.cn

Google Scholar主页:https://scholar.google.com/citations?user=2hSEWTIAAAAJ&hl=en